Tayebi Arasteh, Soroosh https://orcid.org/0000-0003-1015-7733
Ziller, Alexander https://orcid.org/0000-0002-3242-0195
Kuhl, Christiane
Makowski, Marcus https://orcid.org/0000-0001-8778-647X
Nebelung, Sven https://orcid.org/0000-0002-5267-9962
Braren, Rickmer https://orcid.org/0000-0001-6039-6957
Rueckert, Daniel https://orcid.org/0000-0002-5683-5889
Truhn, Daniel https://orcid.org/0000-0002-9605-0728
Kaissis, Georgios https://orcid.org/0000-0001-8382-8062
Funding for this research was provided by:
Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (01ZZ2316C)
The Bavarian State Ministry for Science and the Arts through the Munich Centre for Machine Learning.
Bundesministerium für Bildung und Forschung (01KX2021)
Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (01ZZ2316C)
Deutsches Konsortium für Translationale Krebsforschung
The Bavarian State Ministry for Science and the Arts through the Munich Centre for Machine Learning. ERC Grant Deep4MI
Bundesministerium für Bildung und Forschung (01KD2215B)
EC | Horizon 2020 Framework Programme (101057091)
Article History
Received: 6 April 2023
Accepted: 16 February 2024
First Online: 14 March 2024
Competing interests
: The authors declare no competing interests.